บทที่ 2 โรงไฟฟ้าพลังงานน้ำ(Hydro turbine)
น้ำเป็นสิ่งที่เกิดขึ้นจากธรรมชาติและหมุนเวียนให้ใช้อย่างไม่มีวันหมด น้ำถือเป็นปัจจัย ที่สำคัญต่อการารดำรงชีวิตของสิ่งมีชีวิตทุกชนิด โดยเฉพาะอย่างยิ่งมนุษย์ใช้ประโยชน์จากน้ำทั้งการบริโภคและอุปโภค นอกจากนี้ยังใช้น้ำเป็นแหล่งพลังงานในการผลิตไฟฟ้าเพื่อทดแทนการใช้เชื้อเพลิงจากซากดึกดำบรรพ์ พลังงานที่ได้จากน้ำเป็นพลังงานสะอาดไม่ก่อให้เกิดมลพิษทางอากาศ จึงทำให้ทั่วโลกมีการส่งเสริมมให้มีการใช้พลังงานน้ำเพื่อผลิตไฟฟ้า
2.1 วัฏจักรของน้ำ
โลกมีบริเวณที่เป็นมหาสมุทรประกอบอยู่ถึง 3 ใน 4 ส่วน พลังงานจากแสงอาทิตย์เป็นสาเหตุที่ทำให้เกิดการหมุนเวียนเป็นวัฏจักรของน้ำขึ้น เมื่อน้ำบนโลกได้รับพลังงานความร้อนจากแสงอาทิตย์ จะทำให้น้ำบนผิวโลกตามแหล่งต่างๆ ทั้งในห้วย หนอง คลอง บึง ทะเล และมหาสมุทร ระเหยกลายเป็นไอน้ำและลอยขึ้นไปในอากาศ เมื่อไอน้ำลอยสู่เบื้องบนแล้ว จะได้รับความเย็นและกลั่นตัวกลายเป็นละอองน้ำเล็กๆ ลอยจับตัวกันเป็นกลุ่มเมฆ เมื่อจับตัวกันมากขึ้นและกระทบความเย็นจะกลั่นตัวกลายเป็นหยดน้ำตกลงสู่พื้นโลก และจะเกิดกระบวนการเช่นนี้ซ้ำแล้วซ้ำเล่าเป็นวัฏจักรหมุนเวียนต่อเนื่องกันตลอดเวลา เรียกว่า วัฏจักรธรรมชาติของน้ำ ซึ่งทำให้มีน้ำเกิดขึ้นบนผิวโลกอย่างสม่ำเสมอ
น้ำฝนที่ตกลงสู่พื้นโลก บางส่วนอาจตกลงในแหล่งกักเก็บธรรมชาติที่อยู่บนที่สูง หรือตกลงมาในแหล่งกักเก็บที่มนุษย์สร้างขึ้นเช่น ฝาย เขื่อน เป็นต้น แหล่งกักเก็บน้ำเหล่านี้จะเป็นแหล่งสะสมพลังงานของน้ำในรูปของพลังงานศักย์ ซึ่งถ้าเป็นแหล่งกักเก็บที่อยู่บนที่สูงน้ำจะไหลลงสู่พื้นด้านล่างเป็นลักษณะของน้ำตกจะทำให้เกิดการเปลี่ยนรูปของพลังงานตามธรรมชาติ โดยพลังงานศักย์จะเปลี่ยนเป็นพลังงานจลน์ ซึ่งมนุษย์สามารถนำเอาพลังงานจลน์ที่เกิดขึ้นนี้ไปหมุนกังหันเป็นพลังงานกลเพื่อผลิตกระแสไฟฟ้าได้ โดยหลักการนี้มนุษย์จึงได้สร้างแหล่งกักเก็บน้ำดังกล่าวเพื่อใช้พลังงานจากน้ำไปผลิตกระแสไฟฟ้า วัฏจักรของน้ำแสดงในภาพ
2.2 วัตถุประสงค์ในการสร้างเขื่อนมี2ประเภทใหญ่ๆดังนี้
1 วัตถุประสงค์เฉพาะเพียงอย่างเดียว(Single Purpose)
2 การชลประทาน
3 การอุปโภค บริโภค
4 การผลิตกระแสไฟฟ้า
5 พื่อการอเนกประสงค์(Multipurpose)
6 การชลประทาน(Irrigation)
7 การระบายน้ำ(Drainage)
8 การบรรเทาอุทกภัย(Flood Control)
9 การผลิตกระแสไฟฟ้า(Hydro Power Generation)
10 การคมนาคม(Navigation)
11 การประมง(Fishery)
12 การท่องเที่ยว(Tourism)
13การไล่น้ำเค็ม(Salinity Control)
2.3 การวางแผนสร้างเขื่อน
การวางแผนสร้างเขื่อน จะต้องพยายามใช้ประโยชน์จากบริเวณที่สร้างเขื่อนให้ได้ประโยชน์มากที่สุดโดยศึกษาและสำรวจความสามารถสูงสุดของแหล่งน้ำดังต่อไปนี้
1. ลักษณะภูมิประเทศ(Topography)
2. อุทกวิทยาและอุตุนิยมวิทยา(Hydrology and Meteorology)
3. ธรณีวิทยาและฐานราก(Geology and Meteorology)
4. วัสดุก่อสร้าง(Construction Materials)
5. ผลกระทบต่อสิ่งแวดล้อม(Environment Impact)
2.4 การแบ่งชนิดของเขื่อน
1. เขื่อนแบ่งตามวัสดุในการก่อสร้าง
1.1 เขื่อนแบบฐานแผ่ (Gravity dam)
มีลักษณะรูปหน้าตัดเป็นสามเหลี่ยมมีความลาดชันด้านหน้าเขื่อน อาศัยน้ำหนักคอนกรีตตัวเขื่อนรองรับแรงดันน้ำ
1.1 เขื่อนแบบฐานแผ่ (Gravity dam)
มีลักษณะรูปหน้าตัดเป็นสามเหลี่ยมมีความลาดชันด้านหน้าเขื่อน อาศัยน้ำหนักคอนกรีตตัวเขื่อนรองรับแรงดันน้ำ
เขื่อนกิ่วลม จังหวัดลำปาง
มีลักษณะเป็นรูปโค้งอาศัยแรงกดของความโคงจากตัวเขื่อนรับแรงแล้วถ่ายแรงไปยังฐานยันเขื่อน
เขื่อนภูมิพล จังหวัดตาก
1.3 เขื่อนแบบกลวงหรือเขื่อนครีบ (Hollow or Buttress)
เป็นคอนกรีตเสริมเหล็ก ด้านหน้าโค้งหรือเรียบก็ได้ ด้านหลังเป็นคอนกรีตค้ำยันจะเป็นตัวรับแรงของน้ำ
เป็นคอนกรีตเสริมเหล็ก ด้านหน้าโค้งหรือเรียบก็ได้ ด้านหลังเป็นคอนกรีตค้ำยันจะเป็นตัวรับแรงของน้ำ
2. เขื่อนถม
2.1 เขื่อนดินถมหรือเขื่อนดิน (Earth fill dam)
เป็นเขื่อนที่ใช้ดินถมเป็นส่วนใหญ่(มากกว่า50เปอเซนต์)มีแกนกลางเป็นดินเหนียว
เขื่อนสิริกิติ์ จังหวัดอุตรดิตถ์
เป็นเขื่อนที่ใช้ดินถมเป็นส่วนใหญ่(มากกว่า50เปอเซนต์)มีแกนกลางเป็นดินเหนียว
เขื่อนสิริกิติ์ จังหวัดอุตรดิตถ์
2.2 เขื่อนหินถมหรือหินทิ้ง (Rock fill dam)เป็นเขื่อนที่ใช้หินถมเป็นส่วนใหญ่(หินมากกว่า50เปอเซนต์ของวัสดุทั้งหมด
เขื่อนศรีนครินทร์ จ. กาญจนบุรี
แบ่งตามลักษณะการใช้งาน
1. เขื่อนรับน้ำ (Intake Dam)สร้างเพื่อยกระดับน้ำให้สูงเพื่อเข้าสู่โรงไฟฟ้าเพื่อผลิตไฟฟ้าเช่นเขื่อนปากมูล
2. เขื่อนเก็บกักน้ำ (Storage Dam)เก็บกักน้ำไว้ในอ่าง แล้วควบคุมการปล่อยน้ำให้เป็นไปตามที่ต้องการเช่นเขื่อนภูมิพล เขื่อนศรีนคริน เขื่อนอุบลรัตน์
3. เขื่อนบังคับน้ำ (Regulating Dam)เพื่อควบคุมปริมาณน้ำยกระดับเข้าคลองส่งน้ำสำหรับการชลประทาน
4. เขื่อนเก็บกักน้ำเพื่อสูบน้ำกลับ (Pumped Storage Dam )สร้างเพื่อทำอ่างเก็บน้ำเมื่อปล่อยน้ำออกแล้วสูบกลับ หน้าที่สำคัญคือคอยเก็บน้ำไว้เพื่อผลิตไฟฟ้าในช่วงที่มีความต้องการสูง และในช่างที่มีความต้องการต่ำ ก็จะสูบน้ำจากอ่างเก็บน้ำตอนล่างขึ้นเก็บไว้อ่างตอนบนอย่างเดียว
เขื่อนศรีนครินทร์ จ. กาญจนบุรี
แบ่งตามปริมาณน้ำ
1. แบบไม่มีอ่างเก็บน้ำ (Run of River)เป็นโรงไฟฟ้า ที่สร้างขึ้นเพื่อผลิตไฟฟ้าโดยการบังคับทิศทางการไหลของน้ำ จากแหล่งน้ำเล็กๆ เช่นตามลำห้วย ลำธารหรือฝายต่างๆ ให้มารวมตัวกันและไหลผ่านท่อหรือรางน้ำที่จัดทำไว้ และใช้แรงดันของน้ำซึ่งตกจากตำแหน่งที่สูงมาหมุนกังหันซึ่งต่อกับแกนหมุนของเครื่องกำเนิดไฟฟ้า ลักษณะของโรงไฟฟ้าพลังงานน้ำแบบไม่มีอ่างเก็บน้ำ ดังแสดงในภาพ
ภาพแสดงลักษณะโรงไฟฟ้าพลังงานน้ำแบบไม่มีอ่างเก็บน้ำ
2. แบบมีอ่างเก็บน้ำ(Storage Regulation Development)
เป็นโรงไฟฟ้าที่ทำหน้าที่ผลิตไฟฟ้า โดยการใช้พลังงานน้ำที่มีอยู่ซึ่งอาจเป็นแหล่งธรรมชาติหรือเกิดจากการสร้างขึ้นมาเองในลักษณะของเขื่อน ดังแสดงในภาพ ซึ่งน้ำที่มีอยู่ในอ่างหรือเขื่อนจะมีปริมาณมากพอที่จะถูกปล่อยออกมาเพื่อผลิตไฟฟ้าได้ตลอดเวลา ในประเทศไทยโรงไฟฟ้าแบบนี้ถูกใช้เป็นหลักในการผลิตกระแสไฟฟ้าเพราะเป็นระบบที่มีความมั่นคงในการผลิตและจ่ายไฟสูง
เป็นโรงไฟฟ้าที่ทำหน้าที่ผลิตไฟฟ้า โดยการใช้พลังงานน้ำที่มีอยู่ซึ่งอาจเป็นแหล่งธรรมชาติหรือเกิดจากการสร้างขึ้นมาเองในลักษณะของเขื่อน ดังแสดงในภาพ ซึ่งน้ำที่มีอยู่ในอ่างหรือเขื่อนจะมีปริมาณมากพอที่จะถูกปล่อยออกมาเพื่อผลิตไฟฟ้าได้ตลอดเวลา ในประเทศไทยโรงไฟฟ้าแบบนี้ถูกใช้เป็นหลักในการผลิตกระแสไฟฟ้าเพราะเป็นระบบที่มีความมั่นคงในการผลิตและจ่ายไฟสูง
3. แบบสูบน้ำกลับ(Pumped Storage Plant)
โรงไฟฟ้าแบบนี้ถูกสร้างบนพื้นฐานความคิดในการจัดการกระแสไฟฟ้าส่วนเกิน เพราะโดยปกติการใช้ไฟฟ้าในช่วงกลางคืนที่ค่อนดึกไปแล้วจะมีการใช้ไฟฟ้าลดลงแต่กำลังการผลิตไฟฟ้ายังคงเท่าเดิม ทำให้เกิดการสูญเสียพลังงานไฟฟ้า โรงไฟฟ้าพลังงานน้ำแบบสูบน้ำกลับเป็นโรงไฟฟ้าที่มีอ่างเก็บน้ำสองส่วนคือ อ่างเก็บน้ำส่วนบน (upper reservoir) และอ่างเก็บน้ำส่วนล่าง (lower reservoir) น้ำจะถูกปล่อยจากอ่างเก็บน้ำส่วนบนลงมาเพื่อหมุนกังหันและเครื่องกำเนิดไฟฟ้าเมื่อต้องการผลิตไฟฟ้า ดังแสดงในภาพและในช่วงที่ความต้องการใช้ไฟฟ้าต่ำหรือน้อยลง จะใช้ไฟฟ้าที่เหลือจ่ายให้กับปั๊มน้ำขนาดใหญ่ที่ติดตั้งอยู่ในอ่างเก็บน้ำส่วนล่าง เพื่อสูบน้ำจากอ่างเก็บน้ำส่วนล่างนี้กลับขึ้นไปเก็บไว้ที่อ่างเก็บน้ำส่วนบนเพื่อใช้ในการผลิตไฟฟ้าต่อไป
โรงไฟฟ้าแบบนี้ถูกสร้างบนพื้นฐานความคิดในการจัดการกระแสไฟฟ้าส่วนเกิน เพราะโดยปกติการใช้ไฟฟ้าในช่วงกลางคืนที่ค่อนดึกไปแล้วจะมีการใช้ไฟฟ้าลดลงแต่กำลังการผลิตไฟฟ้ายังคงเท่าเดิม ทำให้เกิดการสูญเสียพลังงานไฟฟ้า โรงไฟฟ้าพลังงานน้ำแบบสูบน้ำกลับเป็นโรงไฟฟ้าที่มีอ่างเก็บน้ำสองส่วนคือ อ่างเก็บน้ำส่วนบน (upper reservoir) และอ่างเก็บน้ำส่วนล่าง (lower reservoir) น้ำจะถูกปล่อยจากอ่างเก็บน้ำส่วนบนลงมาเพื่อหมุนกังหันและเครื่องกำเนิดไฟฟ้าเมื่อต้องการผลิตไฟฟ้า ดังแสดงในภาพและในช่วงที่ความต้องการใช้ไฟฟ้าต่ำหรือน้อยลง จะใช้ไฟฟ้าที่เหลือจ่ายให้กับปั๊มน้ำขนาดใหญ่ที่ติดตั้งอยู่ในอ่างเก็บน้ำส่วนล่าง เพื่อสูบน้ำจากอ่างเก็บน้ำส่วนล่างนี้กลับขึ้นไปเก็บไว้ที่อ่างเก็บน้ำส่วนบนเพื่อใช้ในการผลิตไฟฟ้าต่อไป
2.5 ส่วนประกอบของโรงไฟฟ้าพลังน้ำ
โรงไฟฟ้าพลังงานน้ำมีส่วนประกอบที่ควรรู้จักดังต่อไปนี้
โรงไฟฟ้าพลังงานน้ำมีส่วนประกอบที่ควรรู้จักดังต่อไปนี้
1 อาคารรับน้ำ (power intake) คืออาคารสำหรับรับน้ำที่ไหลจากอ่างลงสู่ท่อที่อยู่ภายในตัวอาคาร เพื่อนำพลังงานน้ำไปหมุนกังหันและหมุนเครื่องกำเนิดไฟฟ้า ภายในตัวอาคารจะมีห้องควบคุมระบบการไหลของน้ำและระบบการผลิตไฟฟ้า อาคารรับน้ำโดยทั่วไปจะถูกสร้างไว้ใกล้ๆ ตัวเขื่อน
2 ตะแกรง (screen) เป็นอุปกรณ์ที่ใช้ป้องกันเศษไม้ หรือวัตถุใดๆ ที่จะผ่านเข้าไปทำให้เกิดการอุดตันของท่อส่งน้ำ หรือสร้างความเสียหายให้กับกังหัน
3 อุโมงค์เหนือน้ำ (headrace) เป็นช่องสำหรับให้น้ำไหลเข้ามายังท่อส่งน้ำอยู่ภายในตัวเขื่อน อุโมงค์นี้จะอยู่ในตัวอาคารรับน้ำมีพื้นที่หน้าตัดเป็นรูปเกือกม้าหรือวงกลม ทำด้วยคอนกรีตเสริมเหล็ก
4 ท่อส่งน้ำ (penstock) เป็นท่อสำหรับรับน้ำจากเหนือเขื่อนและส่งต่อไปยังอาคารรับน้ำ เพื่อหมุนกังหันและเครื่องกำเนิดไฟฟ้า
5 อาคารลดแรงดันน้ำ (surge tank) เป็นอาคารที่สร้างขึ้นเพื่อควบคุมแรงดันของน้ำที่จะอัดใส่ภายในท่อส่งน้ำ ซึ่งอาจทำให้ท่อหรือหัวฉีดน้ำเสียหายได้ โดยทั่วไปจะสร้างอยู่ระหว่างตัวเขื่อนกับอาคารรับน้ำแต่โรงไฟฟ้าที่อยู่ใกล้กับตัวเขื่อนอยู่แล้ว ก็ไม่จำเป็นต้องมีอาคารลดแรงดันน้ำนี้
6 ประตูน้ำ (wicket gate or guide vane) เป็นบานประตูที่ควบคุมการไหลของน้ำที่จะไหลเข้าไปหมุนใบพัดของกังหัน ควบคุมโดยการปิดหรือเปิดประตูน้ำนี้ให้น้ำไหลผ่านเข้าไปยังท่อส่งน้ำในอัตราที่เหมาะสม
7 กังหันน้ำ (water turbine) เป็นตัวรับแรงดันของน้ำที่ไหลมาจากท่อส่งน้ำ โดยแรงดันนี้จะทำหน้าที่ฉีดหรือผลักดันให้กังหันหมุน ทำให้เครื่องกำเนิดไฟฟ้าสามารถผลิตไฟฟ้าออกมาได้ กังหันเป็นส่วนประกอบที่สำคัญของโรงไฟฟ้าพลังน้ำ ซึ่งจะได้กล่าวถึงรายละเอียดในหัวข้อต่อไป
8 ท่อรับน้ำ (draft tube) เป็นท่อรับน้ำหลังจากที่น้ำผ่านออกมาจากกังหัน เพื่อนำน้ำออกไปยังท้ายน้ำ ท่อรับน้ำนี้จะอยู่บริเวณส่วนหลังของกังหัน
9 ทางน้ำล้น (spill way) คือทางระบายน้ำออกจากอ่างเก็บน้ำ ในกรณีที่น้ำในอ่างมีระดับสูงเกินไป ทางน้ำล้นจะต้องมีขนาดใหญ่พอที่จะให้ปริมาณน้ำสูงสุดที่ระบายออก สามารถระบายออกได้ทันเพื่อป้องกันไม่ให้เกิดความเสียหายแก่เขื่อน
10 เครื่องกำเนิดไฟฟ้า (generator) เป็นอุปกรณ์สำหรับเปลี่ยนพลังงานกลจากการหมุนของกังหันมาเป็นพลังงานไฟฟ้าโดยใช้หลักการ
ของขดลวดตัดผ่านสนามแม่เหล็ก
11 หม้อแปลง (transformer) เป็นอุปกรณ์ไฟฟ้าที่ใช้สำหรับแปลงแรงดัน ไฟฟ้าที่ผลิตได้จากเครื่องกำเนิดไฟฟ้า ให้เป็นไฟฟ้าที่มีแรงดั
สูงเพื่อส่งเข้าสู่ระบบสายส่งต่อไป
กังหันเป็นส่วนประกอบที่สำคัญที่สุดของโรงไฟฟ้า เพราะกังหันจะเป็นตัวรับการกระทำจากต้นกำลังมาเป็นพลังงานกลเพื่อหมุนเครื่องกำเนิดไฟฟ้าผลิตไฟฟ้าออกมา
กังหันน้ำแบ่งออกได้เป็น 2 ชนิดคือ
กังหันน้ำแบ่งออกได้เป็น 2 ชนิดคือ
2.6 ชนิดของกังหันน้ำ
1. กังหันแบบแรงกระแทก (Impulse Turbine)
กังหันแบบแรงกระแทกเป็นกังหันที่หมุนโดยอาศัยแรงฉีดของน้ำจากท่อส่งน้ำที่รับน้ำจากที่สูง หรือหัวน้ำสูง ไหลลงมาตามท่อที่ลดขนาดลงมายังหัวฉีดกระแทกถังหันไม่หมุน และต่อแกนกับเครื่องกำเนิดผลิตไฟฟ้าออกไป กังหันแบบแรงกระแทกแบ่งออกเป็น 3 ชนิด คือ
กังหันแบบแรงกระแทกเป็นกังหันที่หมุนโดยอาศัยแรงฉีดของน้ำจากท่อส่งน้ำที่รับน้ำจากที่สูง หรือหัวน้ำสูง ไหลลงมาตามท่อที่ลดขนาดลงมายังหัวฉีดกระแทกถังหันไม่หมุน และต่อแกนกับเครื่องกำเนิดผลิตไฟฟ้าออกไป กังหันแบบแรงกระแทกแบ่งออกเป็น 3 ชนิด คือ
แบบใช้กับหัวน้ำต่ำกำลังผลิตน้อยใช้แบบแบงกี (Banki Type)
1.2 แบบใช้กับหัวน้ำปานกลาง ใช้แบบเทอร์โก (Turgo Type)
1.3 แบบใช้กับหัวน้ำสูงกำลังผลิตมาก ใช้แบบเพลตัน (Pelton Type)
2 กังหันแบบแรงสะท้อน (Reaction Turbine)
กังหันแบบแรงสะท้อนเป็นกังหันที่หมุนโดยใช้แรงดันของน้ำที่เกิดจากความต่างระดับของน้ำด้านหน้าและด้านท้ายของกังหันกระทำต่อใบพัด ระดับด้านท้ายน้ำจะอยู่สูงกว่าระดับบนของปลายท่อปล่อยน้ำออกเสมอ กังหันชนิดนี้เหมาะกับอ่างเก็บน้ำที่มีความสูงปานกลางและต่ำ กังหันแรงสะท้อน
กังหันแบบแรงสะท้อนเป็นกังหันที่หมุนโดยใช้แรงดันของน้ำที่เกิดจากความต่างระดับของน้ำด้านหน้าและด้านท้ายของกังหันกระทำต่อใบพัด ระดับด้านท้ายน้ำจะอยู่สูงกว่าระดับบนของปลายท่อปล่อยน้ำออกเสมอ กังหันชนิดนี้เหมาะกับอ่างเก็บน้ำที่มีความสูงปานกลางและต่ำ กังหันแรงสะท้อน
แบ่งได้เป็น 3 แบบคือ
2.1 กังหันฟรานซิส (Francis Turbine)
เป็นกังหันแบบที่ใช้การไหลช้าของปริมาณน้ำในใบพัดเป็นแบบแฉกและไหลออกขนานกับแกน ซึ่งแสดงว่ามีการเปลี่ยนทิศทางการไหลในขณะผ่านใบพัด กังหันฟรานซิสมีทั้งแบบแกนนอนและแกนตั้ง
เป็นกังหันแบบที่ใช้การไหลช้าของปริมาณน้ำในใบพัดเป็นแบบแฉกและไหลออกขนานกับแกน ซึ่งแสดงว่ามีการเปลี่ยนทิศทางการไหลในขณะผ่านใบพัด กังหันฟรานซิสมีทั้งแบบแกนนอนและแกนตั้ง
2.2 กังหันเดเรียซ (Deriaz Turbine)
หรือกังหันแบบที่มีการไหลของน้ำในทิศทางทแยงมุมกับแกน กังหันแบบนี้ใช้กับกรณีที่มีหัวน้ำสูง ส่วนของใบพัดจะเคลื่อนที่ได้เมื่อมีน้ำไหลผ่าน และมีลักษณะคล้าย ๆ กับกังหันฟรานซิส
หรือกังหันแบบที่มีการไหลของน้ำในทิศทางทแยงมุมกับแกน กังหันแบบนี้ใช้กับกรณีที่มีหัวน้ำสูง ส่วนของใบพัดจะเคลื่อนที่ได้เมื่อมีน้ำไหลผ่าน และมีลักษณะคล้าย ๆ กับกังหันฟรานซิส
กังหันเดเรียซ
2.3 กังหันคาปลาน (Kaplan Turbine)
หรือกังหันแบบใบพัด น้ำจะไหลผ่านใบพัดในทิศทางขนานกับแกนของกังหัน ใช้กับงานที่มีหัวน้ำต่ำ ใบพัดของกังหันคาปลานเป็นใบพัดที่สามารถปรับได้ตามมุมของซี่ใบพัดโดยอัตโนมัติตามแรงอัดหรือแรงฉีดแรงน้ำ โดยจะสัมพันธ์กับความแรงที่หัวฉีดน้ำ
หรือกังหันแบบใบพัด น้ำจะไหลผ่านใบพัดในทิศทางขนานกับแกนของกังหัน ใช้กับงานที่มีหัวน้ำต่ำ ใบพัดของกังหันคาปลานเป็นใบพัดที่สามารถปรับได้ตามมุมของซี่ใบพัดโดยอัตโนมัติตามแรงอัดหรือแรงฉีดแรงน้ำ โดยจะสัมพันธ์กับความแรงที่หัวฉีดน้ำ
2.7 ข้อดีของการใช้พลังงานน้ำ
1 เนื่องจากน้ำมีวัฏจักรเป็นธรรมชาติ ดังนั้นเมื่อเราใช้พลังงานจากน้ำแล้ว น้ำที่ถูกใช้แล้วจะถูกปล่อยกลับไปสู่แหล่งธรรมชาติ จะมีการระเหยกลายเป็นไอเมื่อได้รับพลังงาน ความร้อนจากดวงอาทิตย์ และเมื่อไอน้ำรวมตัวเป็นเมฆก็จะตกลงมาเป็นน้ำฝนหมุนเวียนกลับมาทำให้เราสามารถใช้พลังงานน้ำได้ตลอดไปไม่สิ้นสุด
2 การใช้พลังงานจากน้ำเป็นการใช้เฉพาะส่วนที่อยู่ในรูปพลังงาน ซึ่งไม่ใช่เป็นเนื้อมวลสาร ดังนั้นเมื่อใช้พลังงานไปแล้วเนื้อมวลสารของน้ำก็ยังคงเหลืออยู่ น้ำที่ถูกปล่อยออกมายังมีปริมาณและคุณภาพเหมือนเดิม สามารถนำไปใช้ประโยชน์อย่างอื่นได้อีกมากมาย เช่น เพื่อการชลประทาน การเกษตร การอุปโภคบริโภค หรือรักษาระดับน้ำในแม่น้ำให้มีความลึกพอต่อการเดินเรือ เป็นต้น
3 การสร้างเขื่อนเป็นการเก็บกักน้ำเอาไว้ใช้ในช่วงที่ไม่มีฝนตก ทำให้ได้แหล่งน้ำขนาดใหญ่ซึ่งสามารถประกอบอาชีพด้านประมง หรือใช้เป็นสถานที่ท่องเที่ยวพักผ่อนหย่อนใจได้ และในบางโอกาสก็ยังสามารถใช้ไล่น้ำเสียในแม่น้ำที่เกิดจากการปล่อยของโรงงานอุตสาหกรรมต่างๆ หรือช่วยไล่น้ำทะเลในเวลาที่น้ำทะเลหนุนสูงขึ้นมา
4 ระบบของพลังงานน้ำเป็นระบบที่มีประสิทธิภาพสูง สามารถดำเนินการผลิตพลังงานไฟฟ้าได้ในเวลาอันรวดเร็ว และสามารถควบคุมให้ผลิตพลังงานออกมาได้ใกล้เคียง กับความต้องการ ทำให้การผลิตและการใช้พลังงานเป็นไปอย่างมีประสิทธิภาพ
5 อุปกรณ์ต่างๆ ของระบบพลังงานน้ำส่วนใหญ่จะมีความทนทานสูง มีอายุการใช้งานนาน
ข้อเสียของการใช้พลังงานน้ำ
ข้อเสียของการใช้พลังงานน้ำ
ไม่มีความคิดเห็น:
แสดงความคิดเห็น